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Abstract—Pattern recognition tasks such as the data classifica-
tion and clustering usually can be represented by the perspective
of multiple views or feature spaces. Obviously, the accuracy
of the classification and clustering should be greatly improved
if we carefully consider the discriminabilities from multiple
views and explore the complementary information among them.
However, multiple features also bring new challenges to handle
them. In the literature, many existed multiview feature learning
methods dealt with different views equally, thus they couldn’t
optimally utilize the complementary property of them. On the
other hand, the matrix factorization based clustering algorithms
usually adopt the conventional `2-norm based squared residue
minimization to measure the loss, which is easily influenced
by the outliers and noises from the multiple sources of input.
In this paper, we propose a novel multiview data clustering
algorithm based on the matrix factorization to relieve the above
issues. The basic idea of the proposed Robust and Regularized
Matrix Approximation (RRMA) is that the observed data matrix
could be low-rank approximated by a cluster centroid matrix
and a cluster indicator matrix, respectively, and the major
contributions of our work lie in the introduction of the robust
`2,1-norm and ensemble manifold regularization to regularize the
matrix factorization and make the model more discriminative for
multiview data clustering. We properly adjust the importance of
different views by assigning a set of trainable weights on the
views. Moreover, we propose an efficient solution featured with
impactful updating rules to seek the local optimal parameters.
Encouraging experimental results on numerous public multiview
datasets demonstrate the superiority of our model compared to
some state-of-the-art methods.

I. INTRODUCTION

Unlabeled data is common and plentiful in modern life.
It has been reported that about 72 hours of videos every
minute and 6 billion new photos every month are uploaded
on the YouTube and Facebook, respectively. Unsupervised
learning methods which learn certain knowledge from these
unlabeled data such as clustering, have attracted great interest
of researchers in recent years. A great amount of clustering
algorithms have been proposed and shown encouraging perfor-
mances, e.g., the k-means and nonnegative matrix factorization
(NMF) [1]. However, these methods are mainly developed for
data clustering from a single view of feature representation.

With the rapid development of technology and the increas-
ing amount of information, in many pattern recognition tasks,
the users are able to collect data samples with multiple sources
and from various perspectives [2][3][4]. For example, both
the color and texture are useful feature representations for the

task of image classification, while in the human identification,
we may consider the rich features from the multiple sources
such as face, iris, fingerprint, and palm print. In daily life
people can get access to news covering the same social events
from the BBC, the Reuters, the Guardian and many different
media [5]. However, the conventional clustering algorithms
assume that samples are extracted from a single feature space,
thus they cannot deal with data from multiple views direcly.
Although a straightforward solution to address this problem
is to concatenate all the views and then apply a single-view
clustering algorithm, however, due to the complementary and
redundant properties of features from different views, the
concatenation is not physical meaningful and the improvement
is non-significant in most cases [6][7].

To overcome the drawbacks of single-view clustering al-
gorithms, growing multiview algorithms had been proposed
[8][9][10][11]. Since the multiview clustering are more chal-
lenging than single-view clustering with more complicated
data to handle, the main challenge in multiview clustering
is how to properly address the complementary as well as
redundant proprieties to partition samples.

For instance, Wang proposed a constrained spectral clus-
tering (CSP-P) [12], which took one view as the similarity
matrix and incorporated the other view as the constraints,
but it was only limited to two-view data. Kumar et al.
[13][14] proposed two spectral clustering frameworks which
utilized co-regularization and co-training respectively to make
the eigenvectors agreed on all the views. However, these
two spectral-based algorithms could only achieve an implicit
clustering consistency by merely pushing consistence eigen-
vectors across different views [15]. Recently, some multiview
clustering algorithms based on NMF, which was an effective
technique firstly applied in the conventional data analysis
and then showed superiority in the single-view clustering
[16], had been proposed. Liu et al. [17] proposed a Mult-
iNMF, which suggested a joint matrix factorization process
but with the constraint that constrained clustering solution
of each view towards a common consensus. Cai et al. [18]
proposed a robust multiview k-means model, in which the
relaxed k-means was actually equivalent to G-orthogonal non-
negative matrix factorization. However, most existing NMF-
based clustering algorithms cannot fully address the following
problems: 1) The model’s performance is easily influenced



by the outliers and noises in the input data [19]. 2) Since
NMF learns a part-based representation and implements the
factorization in the Euclidean feature space, The model fails
to uncover the intrinsic geometrical structure of the multiview
data [20][21]. 3) The importance of each view is not properly
considered. Since different views provide complementary as
well as redundant proprieties, it’s not appropriate to encode the
intrinsic structure of each view equally. In [17], the importance
of different view was manually tuned, which indicated the
performance of algorithm was limited by prior knowledge of
views’ qualities.

In order to fully address the above issues, we propose a
robust and regularized matrix approximation (RRMA), which
adopts `2,1-norm to improve the model’s robustness and
encodes the geometrical structure of real-world data with
manifold regularization. Specifically, we approximate the o-
riginal feature matrix represented from multiple views into
the product of cluster centroid matrix by the cluster indicator
matrix which derives the final clustering label. We balance
the importance of each view by maintaining a set of learnable
weights for each view in the manifold regularization, hence
features from different views may have the optimal comple-
mentarity to each other. Furthermore, we propose an elegant
and efficient optimization procedure for solve the objective
function.

The remainder of this paper is organized as follows: Section
2 provides the objective formulation of RRMA in detail. In
Section 3, we propose an efficient optimization procedure for
RRMA. Then the experimental results of RRMA compared
with some state-of-the-art clustering approaches on typical
datasets are reported in Section 4, followed by our conclusions
in Section 5.

II. RRMA MODEL

In this section, we formulate the Robust and Regularized
Matrix Approximation (RRMA) algorithm. Assume that we
have got M views and let X(m) and V (m) represent the
original feature matrix and the cluster centroid for the m-th
view (m = [1, . . . , M ]), respectively. In RRMA, we expect that
each view will have an unique cluster indicator as represented
by U . Let α donates a balanced parameter and β(m) controls
the weight of the m-th view. The objective function of RRMA
algorithm is shown in Eq. 1.

arg min
U,V (m),β

M∑
m=1

∥∥∥X(m) − V (m)UT
∥∥∥
2,1

+ α

M∑
m=1

(βm)
r
tr(UTL(m)U)

s.t.UTU = I, U ≥ 0

(1)

In the following, we describe our model in detail. We
first formulate the objective function of the basic NMF for
multiview clustering, then add two additional regularization
terms to the main objective function, i.e., the multiview

matrix approximation via `2,1-norm and the multiview mani-
fold regularization to form the robust and regularized matrix
approximation.

A. Multiview NMF

Given that we have a data matrix X(X ∈ Rp×n) =
[x1, x2, . . . , xn] consists of n data column vectors, NMF
aims to decompose X into two nonnegative matrices, whose
product can share the maximum degree of similarity with the
original matrix X . The matrix V and U have lower rank
compared with the matrix X . We obtain the optimal V , U
by minimizing the following cost function:

J = min
∥∥X − V UT

∥∥2
F

s.t.U, V ≥ 0 (2)

Then we logically extend this standard NMF to a multiview
version, in which the original matrices from each view share
the same low-rank representation U :

M∑
m=1

∥∥∥X(m) − V (m)UT
∥∥∥2
F

(3)

B. Multiview matrix approximation via `2,1-norm

In the formulations Eq. 2 and Eq. 3, the error for each
data point is a squared residue error, so the algorithms can be
easily affected by the noises and outliers with large errors. In
this part, we employ the `2,1-norm to overcome the unstable
property of the standard NMF, and note that the `2,1-norm of
X is defined as [22][23]:

‖X‖2,1 =
∑n

i=1

√∑p

j=1
X2
ji =

∑n

i=1
‖xi‖ (4)

where n is the number of samples and p is the data dimension.
Then we have:

∥∥X − V UT
∥∥
2,1

=

n∑
i=1

√√√√ p∑
j=1

(X − V UT)2ji

=

n∑
i=1

∥∥xi − V UT
i

∥∥ (5)

Then the objective function becomes:

M∑
m=1

∥∥∥X(m) − V (m)UT
∥∥∥
2,1

=

M∑
m=1

n∑
i=1

√√√√ p∑
j=1

(X(m) − V (m)UT)2ji

=

M∑
m=1

n∑
i=1

∥∥∥x(m)
i − V (m)UT

i

∥∥∥
(6)

By employing the `2,1-norm, our method is no longer
sensitive to outliers inside the data and in the meanwhile
maintains the rotation invariance property within data vectors.



C. Multiview manifold regularized matrix approximation

In fact, different views featured with distinct physical and
statistical characteristics are complementary for each other,
thus the algorithm should incorporate the geometrical correla-
tion among different views as much as possible. In RRMA, we
employ the multiview manifold regularization to regularize our
matrix approximation to incorporate the intrinsic and nonlinear
structure of data across all different views.

Based on the previous formulations, we define the undi-
rected graph of the m-th view as G(m) = {X(m),W (m)}, in
which X(m) is the original feature matrix of the m-th view
and the relation matrix W (m) is weighted by the heat kernels
[24]. The formulation of W (m) is defined as following:

W
(m)
ij =


e
(−

∥∥∥x(m)
i −x(m)

j

∥∥∥/t)
,

x
(m)
i ∈ N(x

(m)
j )orx

(m)
j ∈ N(x

(m)
i )

0, otherwise
(7)

where t is the parameter in Gaussian function and N(x
(m)
i )

is the k-nearest-neighbors set of data sample x
(m)
i . With

the support of previous patch alignment framework [25], the
manifold structure of data in the m-th feature space can be
maximally preserved in the U through the Eq. 8. In this
formulation, L(m) = D(m) −W (m) is a Laplacian matrix of
m-th view, note that D(m) is a diagonal matrix and its entries
are column sums of W (m) [26].

arg min
U

∑
i 6=j

W
(m)
ij ‖ui − uj‖22 = arg min

U
tr(UTL(m)U)

(8)
Then we extend this manifold regularization to a multiview

version and obtain the formulation of multiview manifold
regularization as following:

α

M∑
m=1

(βm)
r
tr(UTL(m)U) (9)

Thus, we can see that the factor matrix U , which is
the cluster indicator in our matrix approximation framework,
actually can also be understood as a special low dimensional
feature representation of the original feature matrices. In Eq.
9, apart from trace operator tr, β = [β1, β2, ..., βm](β > 0
and

∑M
m=1 βm = 1) is a set of nonnegative weight parameters

that control the importance of each view, and scale parameter
r controls the weights of multiple features. By weighting the
features of different views, proper contribution of each view
and their complementary as well as redundant properties are
appropriately encoded so that we can get better performance
[8][27][28]. In the next section, efficient updating rules are
employed in our optimization procedure.

III. OPTIMIZATION

The objective function in above is not convex in four
variables but is convex if we update the 2M + 1 variables
alteratively. Thus, we use an efficient augmented lagrangian
method (ALM) to optimize the objective function. By in-
troducing two auxiliary variables E(m) = X(m) − V (m)UT

and Z1 = U , the objective function can be rewritten as the
following equivalent formulation:

arg min
U,V (m),Em,Z1

M∑
m=1

∥∥∥E(m)
∥∥∥
2,1

+ α

M∑
m=1

(βm)
r
tr(ZT

1 L
(m)U)

s.t.E(m) = X(m) − V (m)UT, Z1 = U,UTU = I, Z1 ≥ 0
(10)

which can be solved by solving the following ALM problem:

min
U,V (m),E(m),Z1,λ(m),µ

M∑
m=1

∥∥∥E(m)
∥∥∥
2,1

+ α

M∑
m=1

(βm)
r
tr(ZT

1 L
(m)U)

+

M∑
m=1

< λ(m), X(m) − V (m)UT − E(m) > + < λ1, Z1 − U >

+
µ

2
(‖Z1 − U‖2F +

M∑
m=1

∥∥∥X(m) − V (m)UT − E(m)
∥∥∥2
F

)

s.t.UTU = I, Z1 ≥ 0
(11)

Update E(m): To update E(m), we fixed other variables
except E(m) and remove the terms that are irrelevant to E(m).
Then the objective function becomes:

min
E(m)

1

2

∥∥∥∥E(m) − (X(m) − V (m)UT +
1

µ
λ(m))

∥∥∥∥2
F

+
1

µ

∥∥∥E(m)
∥∥∥
2,1

(12)
Let B = X(m) − V (m)UT + 1

µλ
(m), then E(m) can be

updated as:

emi =


(1− 1

µ‖bi‖ )bi, if ‖bi‖ ≥
1
µ

0, otherwise

(13)

Update V (m): To update V (m), we fix other variables
except V (m), we obtain the following objective function:

min
V (m)

µ

2

∥∥∥∥X(m) − V (m)U
T

− E(m) +
1

µ
λ(m)

∥∥∥∥2
F

(14)

Considering that UTU = I , we can rewrite the above
objective function as:

min
V (m)

1

2

∥∥∥∥V (m) − (X(m) − E(m) +
1

µ
λ(m))U

∥∥∥∥2
F

(15)

then V (m) = (X(m) − E(m) + 1
µλ

(m))U .
Update Z1:

min
Z1≥0

µ

2
‖Z1 − U‖2F + < λ1, Z1 − U >

+ α

M∑
m=1

(βm)
r
tr(ZT

1 L
(m)U)

(16)

we obtain:
min
Z1≥0

‖Z1 −K‖2F (17)



where K = (U − 1
µλ1 −

α
µ

∑M
m=1 (βm)

r
L(m)U). The above

object function can be further decomposed to element-wise
optimization problem as:

min
Z1ij≥0

‖Z1ij −Kij‖2F (18)

Therefore, the optimal solution of above problems is:

Z1ij = max(Kij , 0) (19)

Update U :

min
UTU=I

< λ1, Z1 − U >

+

M∑
m=1

< λ(m), X(m) − V (m)UT − E(m) >

+
µ

2
(‖ Z1 − U ‖2F +

M∑
(m=1)

∥∥∥X(m) − V (m)UT − E(m)
∥∥∥2
F

)

+ α

M∑
m=1

(βm)
r
tr(ZT

1 L
(m)U)

(20)
removing the irrelevant terms, we have:

min
UTU=I

µ

2
‖ U ‖2F −µ < H,U > (21)

where

H =
1

µ
λ1 + Z1 −

α

µ

M∑
m=1

LZ1

+

M∑
m=1

(X(m) − E(m) +
1

µ
∗ λ(m))

T

V (m)

(22)

Thus, the objective function is equivalent to:

min
UTU=I

‖ U −H ‖2F (23)

Denote:

L(U,Λ) =‖ U −H ‖2F +Λ(UUT − I) (24)

we then obtain:
U = NuQ

T
u (25)

where Nu and Qu are the left and right singular vectors of
the economic singular value decomposition of H .

Update βm: Denote p(m) = tr(ZT
1 L

(m)U)

βm = (rp(m))
1

1−r /
∑
m=1

M(rp(m))
1

1−r

(26)

Update λ(m),λ1, and µ:

λ(m) = λ(m) + µ(X(m) − V (m)UT − E(m)) (27)

λ1 = λ1 + µ(Z1 − U) (28)

µ = ρµ (29)

IV. EXPERIMENT

In this section, we first introduce the a few existed data
clustering algorithms for comparison and the experimental
settings of these methods, then we provide experimental results
on the multiple feature dataset as well as some representative
and challenging real-world multiview datasets, to evaluate the
performance of our method.

A. Comparison algorithms

To test the effectiveness of RRMA algorithm, we show
the performance of the following data clustering methods: (1)
Stack: we directly stack all the feature vectors and perform
k-means algorithm for clustering; (2) MSE [8]: we firstly
perform MSE on the multiple features and then employ the
k-means algorithm for clustering; (3) Canonical Correlation
Analysis: we firstly perform CCA under the Generalized
Multiview Analysis (GMA) framework [29] and then apply
k-means algorithm; (4) ConcatRMNMF: we run RMNMF
(single-view clustering algorithm) [22] on the concatenated
feature representation; and we also compare RRMA with
the state-of-the-art multiview clustering learning algorithms:
(5) Co-regspectral [13], (6) Co-trainspectral [14], and (7)
Constrained multiview spectral clustering (CSP-P, which only
limited to two-view datasets [12]), and (8) MultiNMF [17].

B. Experimental Settings

In the experiment, some algorithms need to perform k-
means after processing multiview feature. When performing k-
means, we repeat clustering process for 20 times with random
initializations and then report the average results with standard
deviations. However, since our proposed RRMA directly out-
puts clustering result without any random procedure, which
indicates our RRMA method could be strictly reproduced,
we only need to set the appropriate parameter ranges and
then find the optimal clustering result. In RRMA, we set
the parameter range of α as 10[−4,−3,−2,−1,0,1,2,3,4] and r as
10[−4,−3,−2,−1,0,1,2,3,4]. Evaluation accuracy (ACC) is utilized
in the experiment to test the performance and the code can be
found on the website1.

C. Experimental results on Multiple Feature Dataset

In this subsection, to demonstrate how clustering perfor-
mance can be improved by our RRMA, we evaluate the
clustering algorithms on the Multiple Feature Dataset 2, which
consists of features of 2000 handwritten digits (from 0 to
9) extracted from a collection of Dutch utility maps. In this
dataset, there are two hundred examples per digit in biniary
images (from 0 to 9) and six feature sets which respectively
represent different views of digit. We utilize four different
feature views: Mfeatkar, Mfeatpix, Mfeatmor, Mfeatzer. To
make experiment more objective and convincing, we randomly
pick two views out of aforementioned views to construct view
X and view Y respectively, so that there are 6 pairs of two-
view datasets in total. We summarize the experimental results

1http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html
2http://archive.ics.uci.edu/ml/machine-learning-databases/mfeat/



TABLE II
STATISTICS OF THE FIVE REAL-WORLD DATASETS

Dataset size view cluster
Wiki 2866 2 10
Cora 2708 2 7
Citeseer 3312 2 6
3sources 169 3 6
Synthetic 1000 3 2

of different methods on Multiple Feature Dataset in Table
I by the measurement of ACC. We make the following ob-
servations: our RRMA outperforms other clustering methods
under the most circumstances, which ultimately demonstrates
the feasibility and superiority of our algorithm. In particular, it
can be seen that the ACC of our proposed algorithm improves
about 15% over that of MSE and 20% over that of Co-
regspectral on the pix&zer pair. On the kar&zer pair, the ACC
of our method is 96% and outperforms the ACC in the second
place about 14%, which shows the great advantage of the
proposed algorithm. Our method ranks second with a slight
drop of 1% on the pix&kar pair when compared with MSE.
It can be observed that the performance of Stack is mediocre
on all the datasets, thus we can see only concatenating the
feature from different views can largely limit the potential
of multiview data. Although the performance of MSE is
encouraging on datasets such as pix&kar pair, it’s obviously
not such stable compared with the performance of our method
on all the datasets: MSE only ranks in the sixth place on the
mor&pix pair and in the seventh place on the mor&zer pair.
The performances of Co-regspectral and Co-trainspectral on
each dataset are considerably stable, but the overall clustering
results of RRMA are higher than those of Co-regspectral
and Co-trainspectral. By simply concatenating all the feature,
the ConcatRMNMF is not encouraging on most multiview
datasets. For MultiNMF, by only manually weighting the
importance of each view, the clustering results can be limited
if there is no prior knowledge of views’ qualities. In sum-
mary, our algorithm shows encouraging superiority with the
robust `2,1-norm and learnable weighted multiview manifold
regularization.

D. Experimental results on representative real-world datasets

In this subsection, we provide experimental results on the
clustering of Wiki text-image data, Cora, Citeseer, 3sources
and synthetic data, to test the performance of our proposed
RRMA algorithm. Detailed information of these representative
and challenge datasets is listed in Table II.

(1) Wiki text-image data: consists of 2866 image-text pairs
with 2 views, i.e., 10 dimensional latent Dirichlet allocation
model based text features and 128 dimensional SIFT histogram
image features.

(2) Cora3: The Cora dataset consists of 2708 machine
learning papers. It can be taken as two views: one view
indicates whether each word is presented in the paper, the
other shows the citing relation among papers.

3http://www.research.whizbang.com/data

(3) Citeseer: This dataset consists of 3312 publications
linked via 4732 citations. All these publications are annotated
by six different labels: DB, IR, ML, Agents, AIand and HC.
It can be taken as two views organized the way same as the
Cora dataset.

(4) 3sources4: This is a multiview text dataset, collected
from three online news sources: BBC, Reuters, and The
Guardian. In the dataset, 169 news articles are reported in all
three sources, and we take these articles from BBC, Reuters,
and the Guardian as view 1, view 2, and view 3, respectively.

(5) Synthetic data: This synthetic dataset is proposed
in [13]. It has three views and two clusters. Each view is
generated by a two component Gaussian mixture model. The
features of each view are correlated.

Table III summarizes the clustering performances of each
algorithm on these five datasets. We can see that the pro-
posed RRMA algorithm outperforms other clustering methods
on these challenging real-world datasets. In detail, we have
the following observations: The advantage of our method
is greatly highlighted on the 3sources dataset, which is a
well-known dataset for clustering experiment. On 3sources
dataset, the ACC of RRMA improves about 15% over that
of ConcatRMNMF and 27% over that of MultiNMF, which
greatly shows the superiority of RRMA. We can see the
performance of Stack is weak on most datasets, which again
indicates that it’s not a wise solution to merely concatenate all
the features. On Cora and Citeseer datasets, the performance
of Co-regspectral and MSE is slightly lower than RRMA’s
respectively, but it can be observed that RRMA shows a
relatively larger advantage on other datasets than the two
algorithms. Since real-world datasets with more noise and
outliers are always complicated, the stable and encouraging
performance on all these challenge real-world datasets largely
indicates the robustness and superiority of RRMA. However,
the performances of MSE, Co-regspectral and CCA are less
robust on the five datasets. In the same way, MultiNMF
and ConcatRMNMF shows encouraging performance only on
specific datasets. To summarize, our proposed algorithm has
shown significant advantages compared with other clustering
algorithms.

V. CONCLUSION

In this paper, we propose a novel RRMA algorithm based
on the `2,1-norm and manifold regularization for multiview
clustering. To summarize, our algorithm not only alleviates the
influence of noises and outliers but also encodes the intrinsic
geometric information among features of different views. In
addition, we properly consider the contribution of each differ-
ent view with complementary and redundant features. To make
our algorithm applicable, we further utilize an augmented
lagrangian based method to optimize the proposed objective
function. Extensive experiments and analyses on five repre-
sentative real-world datasets demonstrate the effectiveness of
our algorithm compare to the state-of-the-art methods.

4http://mlg.ucd.ie/datasets/3sources.html



TABLE I
CLUSTERING RESULTS OF DIFFERENT METHODS ON MULTIPLE FEATURE DATASET BY THE MEASUREMENT OF ACC.

Datasets mor&pix mor&zer pix&zer mor&kar pix&kar kar&zer
Stack 0.3904±0.0040 0.4187±0.0163 0.5092±0.0436 0.3915±0.0034 0.7020±0.0625 0.5307±0.0352
MSE 0.5515±0.0203 0.5170±0.0205 0.8165±0.0689 0.5525±0.0128 0.8545±0.0942 0.8280±0.0372
Co-regspectral 0.7741±0.0194 0.6499±0.0151 0.7154±0.0210 0.7812±0.0414 0.7307±0.0311 0.7342±0.0636
Co-trainspectral 0.8241±0.0102 0.6768±0.0203 0.7661±0.0122 0.8569±0.0293 0.7415±0.0098 0.7577±0.0746
CSP-P 0.4318±0.0241 0.4159±0.0277 0.6392±0.0436 0.2128±0.0211 0.3050±0.0198 0.3637±0.0449
CCA 0.6240±0.0363 0.6490±0.0386 0.2822±0.0073 0.6250±0.0488 0.7280±0.0479 0.5965±0.0189
MultiNMF 0.6860±0.0291 0.6270±0.0054 0.7240±0.0108 0.4512±0.0320 0.7585±0.0061 0.5415±0.0190
ConcatRMNMF 0.5725 0.5460 0.5590 0.5195 0.8020 0.5575
RRMA 0.8360 0.6835 0.9695 0.8835 0.8405 0.9660

TABLE III
CLUSTERING RESULTS OF DIFFERENT METHODS ON TYPICAL REAL-WORLD DATASETS BY THE MEASUREMENT OF ACC.

Datasets Wiki Cora Citeseer 3sources Synthetic
Stack 0.5433±0.0374 0.1963±0.0068 0.2517±0.0162 0.5148±0.0659 0.9900±0.0000
MSE 0.5456±0.0356 0.2471±0.0043 0.3623±0.0007 0.4533±0.0740 0.9941±0.0000
Co-regspectral 0.5497±0.0379 0.2612±0.0011 0.2507±0.0250 0.6302±0.0240 0.9949±0.0000
Co-trainspectral 0.5527±0.0259 0.2284±0.0017 0.2393±0.0113 0.6562±0.0190 0.9937±0.0000
CSP-P 0.1731±0.0050 0.2227±0.0022 0.2045±0.0108 ——– ——–
CCA 0.5337±0.0056 0.2611±0.0002 0.3510±0.0011 0.3432±0.0000 0.9928±0.0001
MultiNMF 0.5621±0.0217 0.2522±0.0019 0.2646±0.0140 0.6789±0.0060 0.9921±0.0000
ConcatRMNMF 0.5557 0.2194 0.3397 0.7929 0.9300
RRMA 0.5687 0.2629 0.3643 0.9408 0.9990
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